Water Relations and Growth of the flacca Tomato Mutant in Relation to Abscisic Acid.

نویسنده

  • K J Bradford
چکیده

The flacca mutant in tomato (Lycopersicon esculentum Mill. cv Rheinlands Ruhm) was employed to examine the effects of a relatively constant diurnal water stress on leaf growth and water relations. As the mutant is deficient in abscisic acid (ABA) and can be phenotypically reverted to the wild type by applications of the growth substance, inferences can be made concerning the involvement of ABA in responses to water stress. Water potential and turgor were lower in leaves of flacca than of Rheinlands Ruhm, and were increased by ABA treatment. ABA decreased transpiration rates by causing stomatal closure and also increased the hydraulic conductance of the sprayed plants. Osmotic adjustment did not occur in flacca plants despite the daily leaf water deficits. Stem elongation was inhibited by ABA, but leaf growth was promoted. It is concluded that, in some cases, ABA may promote leaf growth via its effect on leaf water balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal Stomatal Behavior and Hormonal Imbalance in flacca, a Wilty Mutant of Tomato: V. Effect of Abscisic Acid on Indoleacetic Acid Metabolism and Ethylene Evolution.

The wilty tomato mutant flacca, the normal cultivar Lycopersicon esculentum Mill. Rheinlands Ruhm, and abscisic acid-induced phenotypic revertants were compared with respect to ethylene evolution, activity of tryptophan aminotransferase, and [1-(14)C]indoleacetic acid decarboxylation.The level of ethylene evolution was higher in flacca plants than in the normal cultivar. Ethylene evolution was ...

متن کامل

Drought- and ABA-Induced Changes in Polypeptide and mRNA Accumulation in Tomato Leaves.

Drought stress triggers abscisic acid (ABA) biosynthesis resulting in ABA accumulation. The ABA-deficient tomato mutant, flacca (Lycopersicon esculentum Mill. cv Ailsa Craig), does not synthesize ABA in response to drought stress. This mutant has been used to distinguish polypeptides and in vitro translation products that are synthesized during drought stress in response to elevated ABA levels ...

متن کامل

Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene.

To examine whether the reduced shoot growth of abscisic acid (ABA)-deficient mutants of tomato is independent of effects on plant water balance, flacca and notabilis were grown under controlled-humidity conditions so that their leaf water potentials were equal to or higher than those of well-watered wild-type plants throughout development. Most parameters of shoot growth remained markedly impai...

متن کامل

Electric signaling and pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants

Experiments were performed on three abscisic acid (ABA)-deficient tomato (Lycopersicon esculentum Mill.) mutants, notabilis, flacca, and sitiens, to investigate the role of ABA and jasmonic acid (JA) in the generation of electrical signals and Pin2 (proteinase inhibitor II) gene expression. We selected these mutants because they contain different levels of endogenous ABA. ABA levels in the muta...

متن کامل

Abscisic Aldehyde Is an Intermediate in the Enzymatic Conversion of Xanthoxin to Abscisic Acid in Phaseolus vulgaris L . Leaves 1

The enzymatic conversion of xanthoxin to abscisic acid by cellfree extracts of Phaseolus vulgaris L. leaves has been found to be a two-step reaction catalyzed by two different enzymes. Xanthoxin was first converted to abscisic aldehyde followed by conversion of the latter to abscisic acid. The enzyme activity catalyzing the synthesis of abscisic aldehyde from xanthoxin (xanthoxin oxidase) was p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 72 1  شماره 

صفحات  -

تاریخ انتشار 1983